Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461754

RESUMO

After their discovery, nitric oxide (NO) and indole-3-acetic acid (IAA) have been reported as game-changing cellular messengers for reducing abiotic stresses in plants. But, information regarding their shared signaling in regulating metal stress is still unclear. Herein, we have investigated about the joint role of NO and IAA in mitigation of arsenate [As(V)] toxicity in tomato seedlings. Arsenate being a toxic metalloid increases the NPQ level and cell death while decreasing the biomass accumulation, photosynthetic pigments, chlorophyll a fluorescence, endogenous NO content in tomato seedlings. However, application of IAA or SNP to the As(V) stressed seedlings improved growth together with less accumulation of arsenic and thus, preventing cell death. Interestingly, addition of c-PTIO, {2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide, a scavenger of NO} and 2, 3, 5-triidobenzoic acid (TIBA, an inhibitor of polar auxin transport) further increased cell death and inhibited activity of GST, leading to As(V) toxicity. However, addition of IAA to SNP and TIBA treated seedlings reversed the effect of TIBA resulting into decreased As(V) toxicity. These findings demonstrate that IAA plays a crucial and advantageous function in NO-mediated reduction of As(V) toxicity in seedlings of tomato. Overall, this study concluded that IAA might be acting as a downstream signal for NO-mediated reduction of As(V) toxicity in tomato seedlings.


Assuntos
Óxido Nítrico , Solanum lycopersicum , Ácidos Tri-Iodobenzoicos , Óxido Nítrico/metabolismo , Arseniatos/toxicidade , Plântula/metabolismo , Clorofila A/metabolismo , Ácidos Indolacéticos/metabolismo , Antioxidantes/metabolismo
2.
Trends Plant Sci ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38519324

RESUMO

Reactive oxygen species (ROS) are the key players in regulating developmental processes of plants. Plants have evolved a large array of gene families to facilitate the ROS-regulated developmental process in roots and leaves. However, the cellular targets of ROS during plant evolutionary development are still elusive. Here, we found early evolution and large expansions of protein families such as mitogen-activated protein kinases (MAPK) in the evolutionarily important plant lineages. We review the recent advances in interactions among ROS, phytohormones, gasotransmitters, and protein kinases. We propose that these signaling molecules act in concert to maintain cellular ROS homeostasis in developmental processes of root and leaf to ensure the fine-tuning of plant growth for better adaptation to the changing climate.

3.
J Integr Plant Biol ; 66(2): 163-165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314644

RESUMO

After being infested by aphids, plants trigger a signaling pathway that involves methyl salicylate as an airborne signaling molecule. Thus, the regulation of communication for systemically acquired resistance produced via methyl salicylate is helpful in generating stress resistance among plants against aphid infestation.


Assuntos
Afídeos , Salicilatos , Animais , Afídeos/fisiologia , Transdução de Sinais
4.
Artigo em Inglês | MEDLINE | ID: mdl-37859305

RESUMO

The endoplasmic reticulum (ER) is a sub-cellular organelle that is responsible for the correct folding of proteins, lipid biosynthesis, calcium storage, and various post-translational modifications. In the disturbance of ER functioning, unfolded or misfolded proteins accumulate inside the ER lumen and initiate downstream signaling called unfolded protein response (UPR). The UPR signaling pathway is involved in lipolysis, triacylglycerol synthesis, lipogenesis, the mevalonate pathway, and low-density lipoprotein receptor recycling. ER stress also affects lipid metabolism by changing the levels of enzymes that are involved in the synthesis or modifications of lipids and causing lipotoxicity. Lipid metabolism and cardiac diseases are in close association as the deregulation of lipid metabolism leads to the development of various cardiovascular diseases (CVDs). Several studies have suggested that lipotoxicity is one of the important factors for cardiovascular disorders. In this review, we will discuss how ER stress affects lipid metabolism and their interplay in the development of cardiovascular disorders. Further, the current therapeutics available to target ER stress and lipid metabolism in various CVDs will be summarized.

5.
Planta ; 258(1): 2, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37208534

RESUMO

MAIN CONCLUSION: In this study, we report that peroxynitrite is necessary for ethylene-mediated aerenchyma formation in rice roots under waterlogging conditions. Plants under waterlogging stress face anoxygenic conditions which reduce their metabolism and induce several adaptations. The formation of aerenchyma is of paramount importance for the survival of plants under waterlogging conditions. Though some studies have shown the involvement of ethylene in aerenchyma formation under waterlogging conditions, the implication of peroxynitrite (ONOO-) in such a developmental process remains elusive. Here, we report an increase in aerenchyma formation in rice roots exposed to waterlogging conditions under which the number of aerenchyma cells and their size was further enhanced in response to exogenous ethephon (a donor of ethylene) or SNP (a donor of nitric oxide) treatment. Application of epicatechin (a peroxynitrite scavenger) to waterlogged plants inhibited the aerenchyma formation, signifying that ONOO- might have a role in aerenchyma formation. Interestingly, epicatechin and ethephon co-treated waterlogged plants were unable to form aerenchyma, indicating the necessity of ONOO- in ethylene-mediated aerenchyma formation under waterlogging conditions. Taken together, our results highlight the role of ONOO- in ethylene-mediated aerenchyma formation in rice and could be used in the future to develop waterlogging stress-tolerant varieties of rice.


Assuntos
Catequina , Oryza , Oryza/fisiologia , Ácido Peroxinitroso/metabolismo , Catequina/metabolismo , Etilenos/metabolismo , Raízes de Plantas/metabolismo
6.
ACS Biomater Sci Eng ; 8(7): 3054-3065, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35709526

RESUMO

The effective loading or encapsulation of multimodal theranostic agents within a nanocarrier system plays an important role in the clinical development of cancer therapy. In recent years, the silk fibroin protein-based delivery system has been drawing significant attention to be used in nanomedicines due to its biocompatible and biodegradable nature. In this study, silk fibroin nanoparticles (SNPs) have been synthesized by a novel and cost-effective ultrasonic atomizer-based technique for the first time. The fabricated SNPs were coencapsulated by the FDA-approved indocyanine green (ICG) dye and the chemotherapeutic drug doxorubicin (DOX). The synthesized SNPs are spherical, with an average diameter of ∼37 ± 4 nm, and the ICG-DOX-coencapsulated SNPs (ID-SNPs) have a diameter size of ∼47 ± 6 nm. For the first time, here we demonstrate that DOX helps in the higher loading of ICG within the ID-SNPs, which enhances the encapsulation efficiency of ICG by ∼99%. This could be attributed to the interaction of ICG and DOX molecules with the silk fibroin protein, which helps ICG to get loaded more efficiently within these nanoparticles. The overall finding of this study suggests that the ID-SNPs could be utilized for enhanced ICG-complemented multimodal deep-tissue bioimaging and synergistic chemo-photothermal therapy.


Assuntos
Fibroínas , Hipertermia Induzida , Nanopartículas , Doxorrubicina/farmacologia , Hipertermia Induzida/métodos , Verde de Indocianina/uso terapêutico , Fototerapia/métodos
7.
ACS Omega ; 6(50): 34842-34849, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963967

RESUMO

In recent years, chemo-photothermal therapy (chemo-PTT) has been extensively studied for the upgradation of cancer treatment. The combined therapeutic approach reduces the overall cytotoxicity and enhances the therapeutic effect against the cancerous cells. In chemo-PTT, Indocyanine green (ICG) dye, a near-infrared chromophore, is used for PTT in combination with doxorubicin (DOX), a chemotherapeutic drug. ICG and DOX work very efficiently in synergy against cancer. However, the effect of DOX on the optical properties of ICG has not been studied yet. Here, for the first time, we report the effect of DOX on the optical properties of ICG in detail. DOX interacts with ICG and induces the aggregation of ICG even at a low concentration. The coincubation of both the molecules causes H and J aggregations in ICG. However, the J aggregation becomes more prominent with an increasing DOX concentration. These findings suggest that the optical properties of ICG change upon incubation with the DOX, which might affect the efficacy of PTT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...